Math Logic: Model Theory & Computability Lecture 22

Cocollary (Compacturen theorem). It a J-theory T is finitely satisfiable, then it is schisfiable. Proof. Since T is finitely satisfiable, every timite subtleog of it is consistent, but then the whole T is consistent, hence satisfiable by Gödel Completement.

Henkin's proof of Gödel Completences.

Example. Given a
$$\sigma$$
-standare $\underline{A} := (A, \sigma)$, recall that $\overline{ElDiag}(\underline{P})$ is a theory
in the signature $\sigma_{\underline{A}} := \sigma V \{c_{\underline{a}} : \underline{A} \in A\}$, the $c_{\underline{a}}$ are constant symbols not
present in σ . Furthermore:
 $ElDiag(\underline{A}) = \int \Psi(c_{\underline{a}_1}, c_{\underline{a}_1}, \dots, c_{\underline{a}_n}) : \underline{A} \models \Psi(a_1, a_1, \dots, a_n), \Psi(x_1, x_n)$ is an extended standard).
The clearly, having $\overline{ElDiag}(\underline{A})$, we can actualed a model \underline{A} isomorphic
to \underline{A} : inled table $\widehat{A} := \{c_{\underline{a}} : c_{\underline{a}} \in \overline{\sigma} \setminus \sigma\}$ and define the inherpretection
of symbols in σ first like $\overline{ElDiag}(\underline{A})$ breas up to, e.g. part $f(c_{\underline{a}_1}, c_{\underline{a}_2})$ =
 $:= c_{\underline{a}_1}$ iff $f(c_{\underline{a}_1}, c_{\underline{a}_2}) = c_{\underline{a}_1} \in \overline{ElDiag}(\underline{A})$.
Note that not only $\overline{ElDiag}(\underline{A})$ is $\overline{\sigma}$ -maximal consistent, that if also
has the additional property that where $\overline{\sigma} \vee \Psi \in \overline{ElDiag}(\underline{A})$ for some
extended $\overline{\sigma}$ -hormala $\Psi(v)$, then there is a constant symbol $c_{\underline{a}} \in \overline{\sigma}$ such
that $\Psi(c_{\underline{a}/v}) \in \overline{ElDiag}(\underline{A})$ just becase $A \models \exists v \Psi$ hence there could
be a mitner $\underline{a} \in A$ to Ψ , i.e. $A \models \Psi(\underline{a}/v)$. Then \overline{a} or the first demanding
this cultificant property, together with $\overline{\sigma}$ -maximal consistent, is enorgh

Def. let r be a signature. A r-theory H is called Heakin if it is r-maximal consistent and for each extended T-formula P(v), if Iv & CH then there is some ce Coust (t) such that P(4/2) EH. We call this constant symbol a a Heakin witness for JvP.

For a signature & to be possible to admit a Henkin Z-Stadory, i has to writin lots of constant symbols (at last one). So to build a Henkin theory extending a give wristent T-theory T, we first need to extend the signature.

Adding Heakin withen to signature. Given a signature of me suppose the name. vience It avoid dealing with transfinite rearsion/indechion) that T is att. Then there are ctbly-many 5-formulas and we build a still ctbl extension TH of T by TH := W Th Are To := T and each Th is still ctbl. We build the sequence (Theory by induction on h. Set To := T and suppose that on is defined. Pat If In is cital then so is July, which proves that The is cital being a cital union of cHol sets.

Lemma. Every consistent o-theory Textends to a Henkin GH- theory.

Proof. Again we only prove for ctbl J, since the idea of proof is the same in general. let (Ju) well be defined as above, with Jos=J. let To be a Jornax whistheat extension of T. We inductively build an increasing sequence (Tw) well such that each Tzk is Jk - Maximal consistent theory. Suppose Tzk is define Tzk+1 := Tzk U 4 4 (C^{MI}/₂): FullETzk fact (c) of Lemma about consistency implies that if Tzy is consistent theor Tzy+1 is consistent.

Lastly define Treet as some Terr-maximal consistent extension of Treet. This knishes the inductive construction and we let H= WTw, so H is a TH-Shear. By the lemma about rested whore of conservent thursday, H is consident. Similarly, It is on-maximal becare for any on-sectice 4, I uses only timitely many constants, so Q is a Ox-recterie for come KERV, here PETTE or me ETTE bene Tak is Tre-maximal. Also similarly, one verifies that H is Kenkin: suppose 700 EH for some extended on-formula Ply. But then Jule Tzk for some KEIN, here Q (Cave /) E T2K+1 ⊆ H.

To prove that a given consistent o-know T has a model, it is enough to take a Heakin extension HZT to a THE - theory and build a model M_H == (M, G_H) for H. Lacleed, then the recturat M:=(M, J) of My to a J- Kney would be a F-stancher satisfying T. Thus to prove Gödel Completeness, it is evolut to prove the hollowings

Main Lemma. Let z be a signature. Every Henkin z-theory H has a model. To prove Mis, first note the following:

Lemma. Let H be a z-Henki'n Knowry and t be a z-term. Then there is a (not necessarily unique) constant symbol CET such that t=cEH. Proof. Becale t=t is an axiom for t, we let $\Psi := t = v$, so $\Psi(t/v)$ is t=t, and $\Psi(t/v) \rightarrow \exists v \, \ell$ is provable from the axioms of T(his is thecontempositive of (V, - P) -> - P(t/v), which is avin (4)). Thus, H+ t=t ml HFY(t/v) >> JvY, hence HFJvY by MP, so JvYEH by maxima. ling. Brend H is Heulin, here is ce Constited with 4(40) eH, i.e. t=ceff.